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SUMMARY 

Theoretical calculations of the variation with pressure 
of small amplitude plane wave speeds are performed 
for sodium and potassium at zero temperature. The 
results obtained for wave speeds associated with 
volume dependent second-order elastic coefficients 

show better agreement with experimental data than 
for wave speeds associated with shear dependent 
coefficients. This result is believed to be due to omis­
sion of the band structure correction to the strain 
energy density . 

RESUME 

L' injluence de la pression sur fa vitesse d'ondes 
planes de faible amplitude a he calculee de maniere 
theorique dans Ie cas du sodium et du potassium au 
zero absolu. Les resultats obtenus dans Ie cas ou la 
vitesse des ondes est determinee par les constantes 
elastiques du second ordre qui dependent du volume 
sont en meilleur accord avec les donnees experimen-

tales que ceux qui sont obtenus dans Ie cas ou la 
vitesse des ondes fait intervenir les constantes elas­
tiques qui dependent du cisaillement. On pense que 
cette difference est due it I' omission de La correction 
de structure de bande dans Ie calcul de fa densite 
d'energie de deformation. 

ZUSAMMENFASSUNG 

Die Variation der Ausbreitungsgeschwindigkeit eben­
er Wellen kleiner Amplitude mit dem Druck wurde 
for Natrium und Kalium for 0° K theoretisch berech­
net. Diejenigen Ausbreitungsgeschwindigkeiten, die 
mit den volumenabhiingigen elastischen Koeffizien­
ten zweiter Ordnung gekoppelt sind, zeigen bessere 

INTRODU CTION 

In previous papers we have shown that by means of 
a strain energy formulation it is possible to perform, 
in a general and unified manner, theoretical calcula­
tions for constitutive relations, pressure- volume 
relations, second-order elastic coefficients and the 
variation of these coefficients with dilatation or 
pressure for the alkali metals at absolute zero tem­
perature 1

•
2

. It should be noted that development of 
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Ubereinstimmung mit den experimentellen Werten 
als jene Ausbreitungsgeschwindigkeiten, die mit den 
scherungsabhangigen Koeffizienten zusammen­
hiingen. Dieses Ergebnis ist vermutlich eine Folge 
del' Vernachliissigung del' Bandstrukturkorrektur 
jur die Verformungsenergiedichte. 

the strain energy density function mentioned above 
is independent of classical thermodynamic consider­
ations, which in purely continuum theories of 
elastic behavior must be employed in order to infer 
existence of such a function. 

The strain energy is expressed as a continuous, 
differentiable function of the Green- Cauchy de­
formation tensors, and is based on well established 
quantum and classical calculations of various con­
tributions to the crystal energy. These include ap-
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PLANE WAVE SPEEDS FOR ALKALI METALS 211 

proximations for the Fermi, exchange, correlation 
and ground state energies of the valence electrons, 
the lattice electrostatic energy and the core-core 
overlap repulsion contribution . Omitted are several 
small energy contributions arising from ion core 
oscillations and core-core polarization effects, 
which are of the order of 10 - 3 to 10 - S ryd/ion for 
alkali metals. Also omitted is a second-order per­
turbation correction to the free electron approxi­
mation inherent in calculation of the valence elec­
tron contributions to the crystal energy, the so-called 
band structure energy3. Even when employing the 
simplest known local electron-ion pseudopotential 
suitable for alkali metals, which is the Ashcroft 
form 4

, one finds the resulting band structure energy 
contribution to the strain energy to be so complex 
as to render near hopeless any calculation of higher 
order derivatives with respect to arbitrary deforma­
tions. (See Appendix.) 

Nevertheless, comparisons with experimental 
data show that omission of the band structure term 
has litt le effect on those elastic properties which in­
volve up to two derivatives of the strain energy, e.g. , 
pressure- volume and second-order elastic coeffi­
cient calculations. In theoretical calculation of the 
pressure variation of these coefficients (up to 104 

atmospheres), which in effect involves a third deriva­
tive of the strain energy, fairly good comparisons 
with available experimental data were obtained for 
the volume dependent coefficients2

. For the shear 
dependent coefficients, however, it appears that in­
clusion of the band structure energy may be neces­
sary in order to give these coefficients a more accu­
rate pressure variation. 

In this paper theoretical calculations of the varia­
tion of small amplitude plane wave speeds with 
pressure are performed for sodium and potassium 
at zero temperature. The formalism developed in our 
previous work is particularly well suited for cal­
culations ofthis type since the problem is essentially 
one in which small amplitude plane waves are super­
imposed on initial homogeneously compressed 
crystal states. 

What emerges from the calculations given here, 
as in our previously cited papers, is the realization 
that the problem of crystal elasticity can be given a 
consistent, unified and general structure through a 
strain energy formulation. The predictive accuracy 
of such a formulation of course centers on the ex­
tent to which the underlying crystal energy calcula­
tion includes, with sufficient accuracy, all signifi­
cant energy contributions. When such is the case for 

any given solid or class of soliw, as it appears to be 
for the smaller ion core metallic crystals, theoretical 
calculation of all quantities which characterize elas­
tic material response is then a straightforward 
matter. The practical difficulties of such a program 
lie in the complexity of some of the energy contribu­
tions and their derivatives with respect to arbitrary 
deformations, e.g., the band structure term . 

CRYSTAL STRAIN ENERGY DENSITY 

In the approximation which omits the band struc­
ture contribution (eqns. (A 7HA9) of the Appendix) 
the strain energy density per unit volume of the un­
deformed crystal at absolute zero temperature, in 
atomic units, has the form l , S 

.r={PI - :2 P2} 13- t +P313-+ 

-P413-t +PS In {P6 1!} 

where constants PI ' ... , Pl2 have the values 

1611: 1'5 
3 Ll 6 

P _ 0.062 
S - Ll 3 

P6 = (~r ~ 
4 

P7 = nLl4 

4 
Ll4 

LI 
PIO ="2 

15 

LI 
Pl2 = -

2Jl 

(1) 

In this equation Cap, C;;p' (0:, P= 1, 2, 3) are the direct 
and inverse Green- Cauchy deformation tensors 
referred to the coordinates (Xa) of the undeformed 
state (see the following section), 13 is the third prin­
cipal invariant of CaP' The summation signs L~" L;, 
represent triple sums of Lm, Lm2 Lm3 , and LII , Ln2 L

1I 3
, 

respectively, where ml , m2 , m3, n 1 , n2 , n3 are positive 
and negative integers which must satisfy certain res­
trictions in order properly to incorporate the in-
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212 J. EFfIS, D. E. MACDONALD, G. M. ARKILIC 

TABLE I: TABLE OF LATTICE AND ATOMlC CONSTANTS 

Element !!. roo ab r C 
C Ii Cd 15 

(bu) (bu) (bu) (bu) (ergs x 1012
) (ryd) 

Lithium 7.249 2.84 0.730 0.90 0.652 2.00 1.4 
Sodium 8.138 3.00 1.009 1.65 0.652 1.25 9.2 
Potassium 9.791 3.78 1.066 2.24 0.652 1.25 56.8 
Rubidium 10.278 3.94 1.148 2.49 0.652 1.25 121.9 
Cesium 11.029 4.27 1.206 2.75 0.652 1.25 267.0 

• Reference 6, b reference 7, C reference 8, d reference 9. 

herent anisotropy of the lattice structure. Erfc 
represents the complementary error function, while 
1'/ is a positive but otherwise aribitrary number 
which is chosen so as to effect rapid simultaneous 
convergence of the lattice sums in which it appears. 
The strain energy E can be shown to be invariant 
with respect to the numerical choice of 1'/5. The 
prime on the lattice sums is taken to mean omission 
of the reference lattice site. The set of constants 
f3I> ... , 1312 which include the quantities Ll , ex, ro 
and i5 = Ce2rc/Jlo, together with the allowed values of 
na, rna, characterize both the atomic and lattice struc­
ture of the solid since Ll is the crystal lattice spacing 
at absolute zero temperature, ro is the value of the 
atomic radius for which the valence electron ground 
state energy is minimum, ex is the effective valence 
electron mass ratio near the bottom of the conduc­
tion band and is the measure of the "freeness" ofthe 
valence electrons, while re is the effective ion core 
radius in a rigid ion core approximation. The 
constants C and /1, which appear in the Born­
Mayer central force potential used to approximate 
the core-core overlap repulsion, are obtained from 
alkali halide crystal data where the ion-ion inter­
action is basically of this form. Numerical values of 
the quantities Ll, ro, ex, re , /1, C and i5 used in sub­
sequent calculations are shown in Table 1. 

The zero temperature lattice spacing values listed 
above were obtained from the condition that in the 

. natural (undeformed) state the components of the 
stress tensor 

(2) 

assuming a perfect crystal, vanish everywhere. For 
K #- A this condition is readily satisfied. However, 
for K=A the right-hand side of eqn. (2) will not be 
exactly zero because ofthe approximations inherent 
in the crystal energy calculation. Consequently we 
choose the zero temperature lattice spacing such 
that the right side of eqn. (2) vanishes identically, 

yielding values of Ll which differ from the experi­
mental values of Swenson lO by the following per­
centages: Li(+11.89), Na(+2.01), K(-0.31), Rb 
(- 2.01) and Cs (-1.43). 

The functional form E = E (Ca{J ' na, rna , {13k} ), eqn. 
(1), which is continuous and differentiable in Ca{J' 
is properly invariant both with respect to allowable 
coordinate transformations and with respect to 
changes of frame of reference, i.e., time dependent 
orthogonal transformation of coordinates. The 
anisotropy of the body-centered cubic crystal lattice 
is directly accounted for by the allowed values of the 
integers na and rna in the lattice sums, which are taken 
along the crystallographic axes of the undeformed 
direct and reciprocal lattices. In this form the set of 
quantities {13k}' k= 1, ... , 12, can be interpreted as 
material structure parameters. 

THE ACOUSTICAL TENSOR FOR SMALL AMPLITUDE 

PLANE W A YES SUPERIMPOSED ON HOMOGENEOUSLY 

DEFORMED EQUILIDRIUM CONFIGURATIONS 

When crystals are given an initial homogeneous 
deformation, the elastic propagation of superim­
posed small amplitude plane waves can be studied 
in terms of the properties of an associated acoustical 
tensor 11

•
12

. The components of this tensor, for any 
given wave propagation direction, can be theo­
retically determined whenever the strain energy 
density of the crystal is explicitly known. It will be 
useful for purposes of discussion, within the present 
context, to outline the derivation leading to defmi­
tion of an acoustical tensor together with the condi­
tion for wave propagation. 

Let Ko, K and K(t) represent the natural (unde­
formed), initially deformed and current configura­
tions respectively, of any crystal solid, where t 
designates the time variable. All three configura­
tions are referred to some common rectangular 
coordinate system. Adopting a continuum point of 
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PLANE WAVE SPEEDS FOR ALKALI METALS 213 

view, material points in each of these configurations 
(in the same order) will be specified by position vec­
tors R, nand r, with coordinates (Xa ), (~k) and (xk) 
respectively. 

The deformations which take Ko-+K and K-+ 
K (t) are specified by the one to one mappings 

and 

~k = ~dXa), Xa = Xa(~k) CJ., k = 1, 2, 3, 

j = detlo~,JoXal # 0 (3) 

Xk = Xk(~l> t), ~k = ~k(Xl' t) k, I = 1,2,3 
t>O 

(4) 

The deformations specified by eqns. (3) and (4) are 
equivalent to passage from the natural to the current 
configurations such that 

Xk = xk(Xa, t), Xa = Xa(Xk' t) 

J = det 10xk/oXal # 0 . (5) 

Mass densities Po, P and P associated with configura­
tions K o, K and K(t) are related to the above Jaco­
bians by 

j = Po /p, J' = Pip, J = Po/p . (6) 

If u (n, t) represents the displacement vector of a 
material point currently 6ccupying position r(t), 
which at time t = 0 had the initial position n, then 

(7) 

While Ko-+K may be arbitrary, the superimposed 
time dependent deformationsK -+ K(t) are restricted 
to infinitesimal magnitudes, i.e., OUk/O~1 ~ 1 for all 
t>O. 

Relative to the initial configuration K, appro­
priate constitutive relations for a general theory of 
elasticity are given by 13 

(8) 

(9) 

which are the Cauchy and Kirchhoff-Piola stress 
tensors respectively, where 

- - O~k 
CafJ = ~k.a~l.fJbkl = CfJa, ~k.a = ax (10) 

a 

are the components of the Green-Cauchy deforma­
tion tensor. Constitutive relations of this kind 

presume the existence of a strain energy density 1: 
which is a continuous and continuously differenti­
able function of the CafJ. A mixed Kirchhoff-Piola 
stress tensor is also defined by the relations 

- - oX(/. _ 01: 
4k = J ¥ tkl = 4fJ~k,fJ = ~ (11) 

'-,1 '-,k .a 

which in (he absence of body force are solutions of 
the equilibrium equations 

(12) 

in the initial configuration K. In the current config­
uration K (t) these same stress components satisfy 
the equations of motion 

(13) 

Expanding 4k in the displacement gradients about 
K 

Since the displacement gradients 
u1.fJ = (au1/ a~m)· ~m,fJ' with OUl/0~m ~ 1, 

4k = tk + Aka1fJ u1.fJ 

where in view of relations (10) and (11) 

_ atk 021: 
Ak IfJ = -- = ---

a a~l.fJ O~k.aa~l.fJ 

(14) 

02 1: 01: 
= 4 at at ~k,Y~I.6 + 2 at bk1 · (15) 

ay fJ6 afJ 

Linearized equations of motion about the initial 
configuration in the form 

_ a2 Uk 
[AkalP U1.p]a = Po ot2 (16) 

follow from eqns. (13) and (14), with due account 
taken of eqn. (12). Relative to the coordinates (~k) of 
the initial state these equations transform to 

(17) 

after use of the identity (o/a~p) [j - 1 ~p,a] = O. 
For initial deformations Ko-+K which are ho­

mogeneous, corresponding deformation gradients 
~k.a as well as the strain energy derivatives in eqns. 
(15) have constant values throughout K. Equation 
(17) accordingly reduces to 
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214 1. EFfIS, D. E. MACDONALD, G. M. ARKILIC 

] - 1 - a2
UI _ a2

Uk 

Akal/J~p,a~q,/J a~pa~q = P at2 . (18) 

If the displacements superimposed on the homo­
geneously deformed initial state are small ampli­
tude plane waves 

u = Re[Aei(liv ,,,, - wl)J (19) 

where k is the wave number, v the propagation di­
rection and w the frequency, then eqn. (19) will be 
solutions of the equations of motion (18) if 

Akal/J~p,a~q ,/JvpvqAI = (PO ~:) Ak = POU 2 Ak (20) 

which is a wave propagation condition, with 
w2/P= U 2 the wave speeds. The second-order 
quantities 

Qkl (v) = Akal/J ~p ,a ~q,(J vp Vq 

(21) 

define components of the acoustical tensor, which 
reduces the wave propagation condition to the 
familiar characteristic or eigenvalue equation 

[Qkl(V) - (Po U 2)bk1J Al = 0 (22) 

with Po Ul), i = 1, 2, 3, the eigenvalues and A(i)1 the 
corresponding eigenvectors (displacement ampli­
tudes) which define the acoustical axes for a given 
propagation direction v. 

The character of the wave propagation depends 
on the nature of the matrix Q=(Qkl(V)), The 
eigenvalues and eigenvectors will be real valued if 
the components Qkl(V) are real and symmetric. 
When the eigenvalues are real and distinct the asso­
ciated eigenvectors defme three real mutually ortho­
gonal acoustic axes. If Q is furthermore a positive­
definite matrix, i.e. , satisfies for every propagation 
direction v the so-called strongly elliptic condition 

Qkl(V)hkhl > 0 (23) 

for arbitrary non-zero vector h, then the squared 
wave speeds will be positive, thereby admitting only 
real propagation speeds1l , 14. 

Solids which respond elastically are characterized 
as hyperelastic if they possess a strain energy func­
tion which is continuous and continuously differ­
entiable in some measure of the deformation. The 

development given above makes this presumption, 
from which follows, as examination of eqns. (15) 
and (21) will show, symmetry of the acoustical ten­
sor. Thus for hyperelastic solids the square of the 
wave speeds and the corresponding acoustical axes 
are real, and for each direction of propagation there 
exists at least one mutually orthogonal set of acoustic 
axes. The wave speeds will not necessarily be real 
however, unless condition (23) is additionally 
satisfied. 

The strain energy function for the alkali metals at 
zero temperature, given explicitly by eqn. (1), is of 
course not presumed but derived. Being continuous 
and continuously differentiable in the deformation 
tensor Ca(J' it thereby characterizes these metals as 
hyperelastic and furthermore assures symmetry of 
the acoustic tensor and real values for the squared 
wave speeds. The necessary and sufficient conditions 
which guarantee positive squared wave speeds Ul), 
and thus real wave speeds Uti) , for arbitrary initial 
homogeneous deformation can be obtained from 
condition (23), where eqn. (1) is used in conjunction 
with eqn. (21). This calculation however involves 
several dozens of terms and is much too complicated 
to permit any interpretation. In the next section 
theoretical wave speeds for several propagation 
directions superimposed on different states of initial 
compression are calculated. The values obtained are 
all real and positive indicating positive-defmite 
character of the acoustic matrix Q. 

As K-+Ko, (~k)-+(X,J and ~k ,a -+bKa' Using the 
strain energy density eqn. (1) with zero temperature 
lattice spacing values as given in Table 1, 

oJ: _ 
2 ~ = Yap -+ Yap = 0 

uCa(J 

in the natural state. The quantities (15) correspond­
ingly reduce to 

Akal/J-+AKa'<(J = [4 OC

0 2:c ] = CKaA.(J 
Ka A. /J C = i 

which are the second-order elastic coefficients. C is 
the matrix (Ca/J) and I the identity matrix. Theoreti­
cal calculation of the CKa A. /J using eqn. (1) compare 
quite well with experimental values, particularly 
for potassium, rubidium, and cesium 1,2. The equa­
tions of motion (16) likewise become the equations 
of motion of classical linear elasticity for small 
deformation about the natural configuration Ko 

a2 u 
AKaA./JuA.,/Ja = Po at2K. 
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PLANE WAVE SPEEDS FOR ALKALI METALS 215 

CALCULATION OFTHE VARIA TION OF SMALL AMPLITUDE 

PLANE WAVE SPEEDS WITH PRESSURE 

Uniform compression is the simplest of initially 
deformed configurations from an experimental as 
well as theoretical point of view, permitting elastic 
response of real crystals for deformations which may 
be large. 

Setting 

then 

C~{i = ~k,~~ I , pOkl = ). 2b~{i . 

In matrix representation 

C=(C.p)= ),2 / , 

C- 1 = (C.i / ) = 1j).2 / . 

(25) 

(26) 

Relative to the homogeneously compressed confi­
guration K 

(27) 

(28) 

so that 

(29) 

where Cd/l" ().) are the second-order elastic constants 
in the compressed state and P(J.) the initial pressure. 
The Qkl (v) can be theoretically calculated for any 
propagation direction v by use of eqns. (1) and (26) 
to calculate CK )./l.(,1) and p(,1)2. 

The square of the wave speeds follows from 
eqns. (22) and (29) as 

(30) 

with real values when the right side is positive. In 
the compressed configuration K the second-order 

elastic constants have the same symmetry properties 
(body-centered cubic) as in the natural state: 

Cllll = C2 2 2 2 = C3 3 3 3 

C2 323 = C1313 = C1212 

CI1 22=CI133=C2233 , (31) 

all other Cd /l V vanishing. Furthermore, as has been 
shown both experimentallylS and theoretically2 for 
sodium 

0< C23 23 <C1122 < C'III 

O < C IIiI -C11 22 < C232 3 O <).~ 1 

0 < Cllll-Cl122< C1111+CIl22 ' (32) 

These inequalities apply for all alkali metals in the 
natural state, i.e. , ), = 12

, and can be expected to hold 
when ). < 1 for lithium, potassium, rubidium and 
cesium as well. 

For a plane wave front propagating in the ~ I 

direction, v: (1 , 0, 0) , the hyperelastic b.c.c. crystal 
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Fig. 1. Variation of uD ggi and U! b?8i with pressure for sodium. 
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admits pure longitudinal and transverse waves with 
propagation speeds 

[100) _ _ { 1 - [ ]IP 
U[lOO) - U L - Po Qll 100 ~ 

={~: [ACllll - P]f (33) 

U [lOO) _ U[lOO)_ U _ {1 Q- [100]} t 
[010) - [00 1) - T - Po 22 

(34) 

where (32) requires 

(35) 

The upper brace of indices designates the wave front 
direction while the lower brace denotes the displace­
ment direction or acoustic axes. Calculated values 
of the wave speeds for sodium and potassium to­
gether with experimental data are shown in Figs. 
1 and 2. The experimental curves are constructed 

~ 
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Fig. 2. Variation of ug88j imd ufA?8j with pressure for potassium. 

from the low temperature elasticcoefTicient data 16, 17 

and the room temperature data on the pressure 
variation of the coefTicientsI8 , 19. The theoretical 
curves are of course for absolute zero temperature. 
The rate of increase of wave speed with pressure is 
. seen to be greater for the longitudinal waves, both 
theoretically and experimentally. It is of interest 
therefore to note that in addition to inequality (35), 
both theoretical and experimental results further 
satisfy Truesdell's stronger inequality14 

(36) 
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Fig. 3. Variation of ug l8j and Ufltgj with pressure for sodium. 

which is a "universal relation", that is, which holds 
for any state of initial pressure in every solid deform­
ing elastically. 

For a plane wave front traveling in the [110] direc­
tion, v: (1/")2, 1/")2, 0) , there is associated an ortho­
gonal triad of waves with speeds 
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[1 1 0] _ {I [_ [ ] _ [ }t 
U[11 0J - Po QJ1 110 + Q1 2 110]] 

{ 
).3 [ (_ _ }t 

= 2po A Cl1l1 - Cl1 d -2p] 

U
[ 1 10] _ U[l OO] 
[00 1] - [00 1] 

which by virtue of(32) are such that 

-Ufa8l < Uf66?l < UH~ 8l· 

(37) 

(38) 

(39) 

(40) 

When v has the direction [111] , v: (1 /.J3, 1/.J3, 
1/.J3) , then 

[ 111] _ { 1 _ [ ] _ [ }t 
U [1 11 ]- Po [Ql1 111 +2Q1 2 111]] 

(41) 
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Fig. 4. Variation of ult t8l and ultt8l with pressure for potassium. 

and 

ULL l1] _ U[I .L l J _ U[ ll lJ 
[11 0]- [110]- [011] 

{
I _ _ }t 

= Po [Qll [111] -Q12[111]] 

where 

U LLll] U[111J 
[110J < [111] ' 

(42) 

(43) 

Calculated values together with experimental data 
for sodium and potassium for the last-named two 
cases are shown in Figs. 3- 6. 

The agreement of the calculated and experimental 
pressure variation of the longitudinal wave speeds 
is good. For the shear wave speeds the agreement 
is not good at all. T-his is because the band structure 
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contribution (see Appendix) to the strain energy 
has been omitted2

• 

The formulation presented here suggests that the 
experimental data on the wave speeds and their 
variation with pressure can be compared directly 
with theoretical models for materials. This method 
would avoid the errors introduced into the experi­
mental data when the wave speed data are reduced 
to values for the elastic coefficients. 
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APPENDIX 

THE BAND STRUCTURE ENERGY 

The band structure energy is a second-order per­
turbation addition to the crystal energy, arising 
from a pseudopotential correction to the free 
electron crystal potential which can be shown to 
have the general form 3 

Ep2 = I' S* (Km) · S(Km) F(Km) = I ' F(Km) (AI) 
m m 

where 

S(Km) = I 

() 
QK;, 0 2 I: - I 

F Km = - -8 21(k+KmI Wlk ) 1 -. 
ne e 

(A2) 

The structure factor S(Km) is unity for monovalent 
crystals. F(Km) is the energy wave number charac­
teristic with e the electronic charge, k the wave vec-

o 
tor, W the local electron-ion pseudopotential, e the 
Hartree screening function, Q the atomic sphere 
volume and Km the reciprocal lattice vector. 

The simplest local electron-ion pseudopotential 
suitable for the alkali metals is the Ashcroft form4

, 

wherein 

Then in atomic units 

with 

(A5) 

(A6) 

where QDL is the volume of a unit cell of the direct 
lattice. The significant contribution of the band 
structure energy to higher derivatives of the crystal 
energy comes from the derivatives of the logarithmic 
term in the screening function e, which has a singu­
larity at Km = 2kF. 

The band structure contribution to the strain 
energy can be shown to be5 
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(A7) 

where N is the number of unit cells of the direct 
lattice, 

f,'= 1 + 0 14 
{mampCa/ }t 

x [ 1 I t - [3\1 6J L(C;/ , 13 ) mymijCYii . 13 

and 

(AS) 

L{C- 1 I) = In[[316{mampC;/t t '/3-t +lJ . (A9) 
ap, 3 f316{mampC;plt t . l:j t -1 . 

The [313' [314 , [315 and [316 are constants. These 
l:xpressions involve C;;r/ and 13 repeatedly, terms 
which proliferate upon differentiation with respect 
to the deformation tensor Cd' As a consequen~e, 
calculation of higher order derivatives of the band 
structure contribution with respect to arbitrary 
deformation becomes extremely tedious. 
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